Vive Input Utility Developer Guide

Vive Input Utility Developer Guide

Email: vivesoftware@htc.com

Forum: http://community.viveport.com

GitHub: https://github.com/ViveSoftware/VivelnputUtility-Unity

Wiki: https://github.com/ViveSoftware/VivelnputUtility-Unity/wiki

About

Vive Input Utility is an Unity plugin that allows developers to access Vive device status, including Vive

Tracker.

We also introduce a mouse pointer solution that works in 3D space and is compatible with the Unity

Event System, and a device binding system to manage multiple tracking devices.

Our goal is to accelerate Unity developers making new VR apps and discovering new VR experience

by saving their time in writing redundant code managing Vive devices.

Motivation

The SteamVR plugin provides a C# interface to let Unity developers interact with Vive devices.
But getting the controller input status or device pose causes lots of redundant code:

® You must continuously get the correct device index, which is determined by

SteamVR_ControllerManager whenever a controller is connected.
® |ocating SteamVR_ControllerManager also causes more effort.

So our main goal is to provide handy interface and reduce the redundancy.

Copyright 2016-2017, HTC Corporation. All rights reserved.

http://community.viveport.com/
https://github.com/ViveSoftware/ViveInputUtility-Unity
https://github.com/ViveSoftware/ViveInputUtility-Unity/wiki

Vive Input Utility Developer Guide

Main Features

o Using static function to retrieve device input:
[Button's event
® Tracking pose.

° Using ViveRaycaster component to achieve 3D-space-pointer that compatible with Unity Event

System.

Static Interface

° Get button's event

Instead of finding device through SteamVR scripts...

using UnityEngine;
using Valve.VR;

public class GetPressDown_SteamVR : MonoBehaviour

{
public SteamVR_ControllerManager manager;
private void Update()
{
// get trigger down
SteamVR_TrackedObject trackedObj = manager.right.GetComponent<SteamVR_TrackedObject>();
SteamVR_Controller.Device rightDevice = SteamVR_Controller.Input((int)trackedObj.index);
if (rightDevice.GetPressDown(EVRButtonId.k_EButton_SteamVR_Trigger))
/] ...
}
}
}

Class Vivelnput under HTC.UnityPlugin.Vive provides a simpler API to achieve that.

using UnityEngine;
using HTC.UnityPlugin.Vive;

public class GetPressDown_ViveInput : MonoBehaviour

{
private void Update()
{
// get trigger down
if (ViveInput.GetPressDownEx(HandRole.RightHand, ControllerButton.Trigger))
{
/] ...
}
}
}

Getting axis values as well.

using UnityEngine;
using HTC.UnityPlugin.Vive;

public class GetAxisValue_ViveInput : MonoBehaviour

{
private void Update()
// get trigger axis value
if (ViveInput.GetAxisEx(HandRole.RightHand, ControllerAxis.Trigger) > 0.5f)
{
/] ...
}
}
}

Copyright 2016-2017, HTC Corporation. All rights reserved.

Vive Input Utility Developer Guide

° Listen to button's event

Vivelnput also provides callback style listener.

using UnityEngine;
using HTC.UnityPlugin.Vive;

public class GetPressDown_ViveInputHandler : MonoBehaviour

{
private void Awake()
{
ViveInput.AddListenerEx(HandRole.RightHand, ControllerButton.Trigger, ButtonEventType.Down, OnTrigger);
}
private void OnDestroy()
{
ViveInput.RemovelListenerEx(HandRole.RightHand, ControllerButton.Trigger, ButtonEventType.Down, OnTrigger);
}
private void OnTrigger()
{
/] ...
}
}

° Get tracking pose
Class VivePose also under HTC.UnityPlugin.Vive provides an API to get a device pose.
Its return type is RigidPose under HTC.UnityPlugin.Utility.

using UnityEngine;
using HTC.UnityPlugin.Vive;
using HTC.UnityPlugin.Utility;

public class GetPose_VivePose : MonoBehaviour
{
private void Update()
{
RigidPose posel = VivePose.GetPoseEx(HandRole.RightHand);
RigidPose pose2 = VivePose.GetPoseEx(TrackerRole.Trackerl);
// set transform to the mid point between them
if (VivePose.IsValidEx(HandRole.RightHand) && VivePose.IsValidEx(TrackerRole.Trackerl))
{

transform.localPosition
transform.localRotation

Vector3.Lerp(posel.pos, pose2.pos, 0.5f);
Quaternion.Lerp(posel.rot, pose2.rot, 0.5f);

® FEasily identify devices by defined roles
Currently there are HandRole, TrackerRole, BodyRole defined under HTC.UnityPlugin.Vive.

[] HandRole: Mostly mapping to controllers with buttons, except ExternalCamera is
mapping to third found controller or first found tracker. (RightHand, LeftHand,

ExternalCamera, Controller4~15)
® TrackerRole: Mapping to generic trackers such as Vive Tracker. (Tracker1~13)

® BodyRole: Mapping to controllers and trackers depends on their position related to

player's head, body and limbs. (Head, RightHand, LeftHand, RightFoot, LeftFoot, Hip)

Copyright 2016-2017, HTC Corporation. All rights reserved.

Vive Input Utility Developer Guide

° Get more device information detail

Class VRModule under HTC.UnityPluginVRModuleManagement provides an APl to get more about
device info besides button state and tracking pose, such as connecting state, serial number, model

number, device class...

Notice that class ViveRole under HTC.UnityPlugin.Vive is responsible for mapping role to device
index, and VRModule.GetDevicelndex requires device index as its argument, not role enum.
using UnityEngine;
using HTC.UnityPlugin.Vive;
using HTC.UnityPlugin.VRModuleManagement;

public class PrintDeviceState_VRModule : MonoBehaviour

{
private uint m_deviceIndex;
private void Update()
{
var deviceIndex = ViveRole.GetDeviceIndexEx(HandRole.RightHand);
if (m_deviceIndex != deviceIndex)
{
m_deviceIndex = deviceIndex;
if (VRModule.IsValidDeviceIndex(deviceIndex))
{
var deviceState = VRModule.GetDeviceState(deviceIndex);
Debug.Log("HandRole.RightHand is now mapped to device " + devicelIndex);
Debug.Log("serialNumber=" + deviceState.serialNumber);
Debug.Log("modelNumber=" + deviceState.modelNumber);
Debug.Log("renderModelName=" + deviceState.renderModelName);
Debug.Log("deviceClass=" + deviceState.deviceClass);
Debug.Log("deviceModel=" + deviceState.deviceModel);
}
else
{
Debug.Log("HandRole.RightHand is now mapped to invalid device");
}
¥
else
if (VRModule.IsValidDeviceIndex(deviceIndex))
{
var deviceState = VRModule.GetDeviceState(deviceIndex);
Debug.Log("velocity=" + deviceState.velocity);
Debug.Log("angularVelocity=" + deviceState.angularVelocity);
Debug.Log("position=" + deviceState.position);
Debug.Log("rotation=" + deviceState.rotation);
Debug.Log("buttonPressed=" + deviceState.buttonPressed);
Debug.Log("buttonTouched=" + deviceState.buttonTouched);
}
¥
¥
}

Copyright 2016-2017, HTC Corporation. All rights reserved.

Vive Input Utility Developer Guide

Helper Components

) Vive Pose Tracker

It works like SteamVR_TrackedObject, but targets device by using ViveRole.DeviceRole instead of

device index.

7 [M Vive Pose Tracker (Script) i = Trwalid
Script VivePoseTracker @

Pos :)Ffset x[0 Iv[o lzo | | GRS

Rot Offset x[0 [0 [z[o] LeftHand
Origin [None (Transform) | @ Controller3
Vive Role | HandRale 4 || RightHand 4+ — Controllerd
On Is Valid Changed (Boclean) Controllers
List is Empty Controllers
Controller?
— Controllerd
Controllerd

Controllerl®
Controller1l
Controllerl2
Controllerl3
Controllerl4
Controllerls

° Pose Modifier
It is a tracking effect script applied to a pose tracker.

Implement abstract class PoseTracker.BasePoseModifier to write custom tracking effect.

Without pose modifier With pose modifier
¥ M Vive Pose Tracker (Script) [¥ | M Vive Pose Tracker (Script) [
Script VivePoseTracker @ Script VivePoseTracker [c]
Pos Offset %[0 v [0 zlo] Pos Offset %[0 (o |z[o |
Rot Offset %0 Y0 z[o] iz it %[0 [v[o |z[o |
Origin [None (Transform)] Origin [None (Transform) e
Vive Role | HandRole 4 || RightHand 3] Vive Role [HandRale ¢ | [RightHand +]
0On Is Valid Changed (Boolean) On Is Valid Changed (Boolean)
List is Empty LIEi2 0 iy
+ [+ -
- | M Pose Easer (Script) @ %
Seript PoseEaser o]
Priarity |0 |
Duration |0.2 |
Ease Position ¥ Y Mz
Ease Rotation x My Mz
https://vimeo.com/171724218 https://vimeo.com/171724270

Copyright 2016-2017, HTC Corporation. All rights reserved.

https://vimeo.com/171724218
https://vimeo.com/171724270

Vive Input Utility Developer Guide

Multiple modifiers are allowed. Priority determines the pose modified order.

[| Pose Stabilizer

| [static

If controller moves within the threshold, the
object stays. Otherwise, the object keeps the

offset and follows.

u Pose Easer

Let the object follows controller using easing
0on Is Valid Changed (Boolean)
curve. List is Empty

u Pose Freezer
It constrains the object following movement by

setting axis flags.

Copyright 2016-2017, HTC Corporation. All rights reserved.

® Vive Raycaster & Raycast Method

Vive Input Utility Developer Guide

Custom Pointer3DRaycaster implement for Vive controller to achieve 3D-space-pointer that

compatible with Unity Event System.

Vive Raycaster is an event raycaster script that sends Vive button's event from its transform.

That means your controller can act like a 3D mouse by combining Vive Pose Tracker and Vive

Raycaster.

A Vive Raycaster must works with Raycast Method to raycast against different types of objects.

Raycast Method

Physics Raycast Method

Physics 2D Raycast Method

Graphic Raycast Method

Canvas Raycast Method

Against Type

Collider
Collider2D
Graphic in target Canvas

Graphic in all Canvas with

CanvasRaycastTarget component

For example, you can arrange them like this to interact with UGUI menu:

¥ | 4 Vive Raycaster (Script)
Seript ViveRaycaster
Near Distance 0
Far Distance 20
Orag Threshold 0.2
Click Interval 03
Show Debug Ray
Vive Role
Button Events
Scroll Delta Scale 50

Master Usiume

¥ ¢ ¥ canvas Raycast Method (Script)
Seript CanvasRaycastMet!

hod

Music

¥ | ¥ Vive Raycaster (Script)
Seript ViveR aster
Near Distance 0
Far Distance 20
Orag Threshold 0.02
Click Interval 0.3
Show Debug Ray (¥
Vive Role
Button Events A
Scroll Delta Scale 50

¥ | ¥ Canvas Raycast Method (
Script Canv

Script)
aycastMethod

More examples:

https://vimeo.com/169824408

Hold T'_iQQEr/Grlp
t objects

b0

v| |Mcanvas
Render Mode World Space
Event Camera [None (Camera)

Sorting Layer | Dsfault
Order in Layer [0

s)

)

¥ [c: M canvas Raycast Target (Script)
Script CanvasRaycastTarget

Ignore Reversed Grid

Qe

https://vimeo.com/169824438

GUI Demo
{'E}Trjj
New Game
Settings

Qur:

Copyright 2016-2017, HTC Corporation. All rights reserved.

https://vimeo.com/169824408
https://vimeo.com/169824438

Vive Input Utility Developer Guide

) Raycaster Event Handler
You must implement an Event System Handler to catch an event sent by an event raycaster.

® Add a component that implements event handler interfaces that are supported by the
built-in Input Module on an object. See

https://docs.unity3d.com/Manual/SupportedEvents.html to learn more about built-in

event handlers.

B Add event receiver (Collider/Collider2D/Graphic) to the object or child of the object.

using UnityEngine;

using UnityEngine.EventSystems;
using System.Collections.Generic;
using HTC.UnityPlugin.Vive;

public class MyPointerEventHandler : MonoBehaviour
, IPointerEnterHandler
, IPointerExitHandler
, IPointerClickHandler

{
private HashSet<PointerEventData> hovers = new HashSet<PointerEventData>();
public void OnPointerEnter(PointerEventData eventData)
if (hovers.Add(eventData) && hovers.Count == 1)
// turn to highlight state
}
}
public void OnPointerExit(PointerEventData eventData)
if (hovers.Remove(eventData) && hovers.Count == 0)
// turn to normal state
}
}
public void OnPointerClick(PointerEventData eventData)
{
if (eventData.IsViveButton(ControllerButton.Trigger))
// Vive button triggered!
else if (eventData.button == PointerEventData.InputButton.Left)
{
// Standalone button triggered!
}
}
}

Copyright 2016-2017, HTC Corporation. All rights reserved.

https://docs.unity3d.com/Manual/SupportedEvents.html

Vive Input Utility Developer Guide

° Vive Collider Event Caster

Like Vive Raycaster, Vive Collider Event Caster is also an extension of Unity Event System.

But the Collider Event Caster isn't driven by any input module, so they can work together at the

same time if needed.

Instead of using raycast, Collider Event Caster uses 3D
physics triggers to "touch at" other 3D physics

colliders and sends them hover events and button

events.

As a result, when setting up Collider Event Caster,

remember to set child colliders as a trigger.

["= ierarchy [GRET © Tnspector |1 Lighting]
) . . | erees | T | @ pherecolaer | Clsttic ~
To setup Vive Collider Event Caster in short cut, Fo———— N v e PO Err—
¥ VROrigin Select Revert Apply
. b[Ca‘:neraRiq] 75?“’ T"“f‘“m “
follow the tutorial document, and replace T Uhecolders e o (O
¥ PoseTracker Rotation XV Z
. olliderEventCaster Scale x[1 Y1 Z[1
VivePointers with ViveColliders prefab in step 2. PRI . o) 5o cotider =
- Boxcallider Edit Collider
» Environment 1s Trigger]
» Canvas Material None (Physic Material) | @
Center
%[0 Iv[o Jz[o]
Radius 0.06
[Add Component]

o Collider Event Handler

Because Collider Event System works based on trigger message, the event receiver can only be

colliders that able to send trigger message. (Box/Sphere/Capsule/Mesh colliders)

Collider Event doesn't supports built-in event handlers, only the followings:

IColliderEventHoverEnterHandler

Called when a controller enters the object.

IColliderEventHoverExitHandler

Called when a controller exits the object.

IColliderEventPressDownHandler

Called when a controller button is pressed on the object.

IColliderEventPressUpHandler

Called when a controller button is released on the object.

IColliderEventPressEnterHandler
Called when a controller enters the object with pressed button or when a controller

button is pressed on the object.

Copyright 2016-2017, HTC Corporation. All rights reserved.

Vive Input Utility Developer Guide

IColliderEventPressExitHandler
Called when a controller exits the object with pressed button or when a controller button

is released on the object.

[] IColliderEventClickHandler

Called when a controller is pressed and released on the same object without leaving it.

[] IColliderEventDragStartHandler

Called on the drag object when dragging is about to begin.

[] IColliderEventDragFixedUpdateHandler
Called on the drag object when a drag is happening in that fixed frame (called on the

original drag start object).

[IColliderEventDragUpdateHandler
Called on the drag object when a drag is happening in that frame (called on the original

drag start object).

[] IColliderEventDragEndHandler

Called on the drag object when a drag finishes (called on the original drag start object).

[IColliderEventDropEndHandler

Called on the object where a drag finishes.

[] IColliderEventAxisChangedHandler

Called when the touch pad scrolls or trigger button moves on the object.

) Collider Event Data

There are three kinds of event data sent to the event handler, each of them delivered with different

properties and status, except eventCaster, the owner of the event data.

[] ColliderHoverEventData

An empty event data without any properties except eventCaster.

[ColliderButtonEventData
Represents a button on a controller. You can get button status from its properties like

isPressed, isDragging, pressPosition and pressRotation.

[] ColliderAxisEventData

Stored with scroll delta values.

Copyright 2016-2017, HTC Corporation. All rights reserved.

Vive Input Utility Developer Guide

Prefabs

There are some prefabs prepared for setting up scene conveniently placed at

Assets/HTC.UnityPlugin/Prefabs/:
° [Vive Input Utility] (Collection of Managers)

This prefab include all the runtime managers used by Vive Input Utility. By adding it into the scene

manually, you can override their default properties.
® Vive Camera Rig

This prefab is like the [CameraRig] in SteamVR plugin, but manage device tracking and models in

ViveRole's way. It includes a VR camera and 5 tracking devices with default render models.

4= © Inspector | 2 Lighting Chee
L @ [RightHand [Static =
Tag [Untagged +) Layer [Defauke |

Prefab [ect et

You can simply replace the default model by

putting your custom model under the specific

device object. For example, if you want to replace

RightHand model, just put your custom model

ViveRoleSett:

veRoleSetter [}
HandRole 4] [RightHand ¢

Wi ole

under RightHand object. Additionally, you can YO pose Tracker (serpy @S-
Pos Offset X0 Y 0

register the model's GameObjcet.SetActive G o Tt
e o

©n Is Valid Changed (Boolean)

function under OnlsValidChanged event to hide

the model when the device is not connected. o =

[) Vive Pointers

This prefab creates two event raycasters tracked along each hands (without device model). The

raycast can interact with the built-in UGUI elements or physics colliders, just like a 3D mouse pointer.
° Vive Curve Pointers

This prefabs creates two "curved" event raycasters (without device model).

® Vive Colliders

This prefab creates two grabbers tracked along each hands (without device model) that can grab

physics objects with grabbable component (BasicGrabbable, StickyGrabbable).
° Vive Rig

This prefab is a combination of all four prefabs Vive Camera Rig, Vive Pointers, Vive Curve
Pointers, ViveColliders, with a ControllerManagerSample script. The script is a basic

demonstration of how to control all these functions, it should always be customized on demend.

Copyright 2016-2017, HTC Corporation. All rights reserved.

Vive Input Utility Developer Guide

Common Used API Reference

B using HTC.UnityPlugin.Vive

] static bool ViveInput.GetPressEx<TRole>(TRole role, ControllerButton button)
* Returns true while the button is pressed.
] static bool ViveInput.GetPressDownEx<TRole>(TRole role, ControllerButton button)
L 2 Returns true during the frame the user starts pressing down the button.
] static bool ViveInput.GetPressUpEx<TRole>(TRole role, ControllerButton button)
* Returns true during the frame the user releases the button.
u static float ViveInput.LastPressDownTimeEx<TRole>(TRole role, ControllerButton button)
* Returns last press down unscaled time.
u static int ViveInput.ClickCountEx<TRole>(TRole role, ControllerButton button)
* Returns the button click count. Click count will increase only if the button pressed

down/up duration less than ViveInpu.clickInterval (default is 0.3 second).

u static float ViveInput.GetAxisEx<TRole>(TRole role, ControllerAxis axis)
* Returns the value of the axis.
u static void ViveInput.AddListenerEx<TRole>(TRole role, ControllerButton button, ButtonEventType eventType,

System.Action callback)

* Adds listener to handle the specific button event.

u static void ViveInput.RemovelListenerEx<TRole>(TRole role, ControllerButton button, ButtonEventType eventType,

System.Action callback)

* Removes listener that handles the specific button event.
u static void ViveInput.TriggerHapticPulseEx<TRole>(TRole role, ushort durationMicroSec = 500)
* Triggers a haptic pulse. Usually called once in each frame to make a long vibration.

Currently only works with Vive Controller.

u static HTC.UnityPlugin.Utility.RigidPose VivePose.GetPoseEx<TRole>(TRole role)

* Returns current position and rotation of the device identified by role.

Copyright 2016-2017, HTC Corporation. All rights reserved.

Vive Input Utility Developer Guide

u static uint ViveRole.GetDeviceIndexEx<TRole>(TRole role)

* Returns the device index that the role is mapping to.

B using HTC.UnityPlugin.VRModuleManagement

] static bool VRModule.HasInputFocus()

* Returns true if input focus captured by current process. Usually the process losses focus

when player switch to dashboard by clicking Steam button.

] static IVRModuleDeviceState VRModule.GetDeviceState(uint deviceIndex, bool usePrevious = false)

* Returns the readonly device state.

Copyright 2016-2017, HTC Corporation. All rights reserved.

