Browse Source

reUpload

master
ZGC 3 years ago
parent
commit
082d3b0301
  1. 40
      BodyCloseSensor.py
  2. 255
      NRF24L01Master.py
  3. 233
      NRF24L01Slave.py
  4. 78
      TemperatureSensor.py
  5. 80
      TemperatureSensor2.py
  6. 222
      micropythonGUI.py
  7. 38
      ssd1306_simpletest.py
  8. 9
      test.py

40
BodyCloseSensor.py

@ -0,0 +1,40 @@ @@ -0,0 +1,40 @@
#人体接近传感器示例
import RPi.GPIO as GPIO
import time
import sqlite_connector
# 初始化
def init():
# 设置不显示警告
GPIO.setwarnings(False)
# 设置读取面板针脚模式
GPIO.setmode(GPIO.BOARD)
# 设置读取针脚标号
GPIO.setup(11, GPIO.IN)
pass
def detct():
while True:
curtime = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
# 当高电平信号输入时报警
if GPIO.input(11) == True:
alart(curtime)
print(GPIO.input(11))
else:
continue
time.sleep(3)
def alart(curtime):
print(curtime + " Someone is coming!")
time.sleep(2)
init()
detct()
GPIO.cleanup()

255
NRF24L01Master.py

@ -0,0 +1,255 @@ @@ -0,0 +1,255 @@
# -*- coding: UTF-8 -*-
import time
import RPi.GPIO as GPIO
#一下试一下nrf24l01的C语言宏定义
TX_ADR_WIDTH = 5 # 5 uints TX address width
RX_ADR_WIDTH = 5 # 5 uints RX address width
TX_PLOAD_WIDTH = 32 # 20 uints TX payload
RX_PLOAD_WIDTH = 32 # 20 uints TX payload
TX_ADDRESS = [0x34,0x43,0x10,0x10,0x01] #本地地址
RX_ADDRESS = [0x34,0x43,0x10,0x10,0x01] #接收地址
READ_REG = 0x00 # 读寄存器指令
WRITE_REG = 0x20 # 写寄存器指令
RD_RX_PLOAD = 0x61 # 读取接收数据指令
WR_TX_PLOAD = 0xA0 # 写待发数据指令
FLUSH_TX = 0xE1 # 冲洗发送 FIFO指令
FLUSH_RX = 0xE2 # 冲洗接收 FIFO指令
REUSE_TX_PL = 0xE3 # 定义重复装载数据指令
NOP = 0xFF # 保留
#*************************************SPI(nRF24L01)寄存器地址****************************************************
CONFIG = 0x00 # 配置收发状态,CRC校验模式以及收发状态响应方式
EN_AA = 0x01 # 自动应答功能设置
EN_RXADDR = 0x02 # 可用信道设置
SETUP_AW = 0x03 # 收发地址宽度设置
SETUP_RETR = 0x04 # 自动重发功能设置
RF_CH = 0x05 # 工作频率设置
RF_SETUP = 0x06 # 发射速率、功耗功能设置
STATUS = 0x07 # 状态寄存器
OBSERVE_TX = 0x08 # 发送监测功能
CD = 0x09 # 地址检测
RX_ADDR_P0 = 0x0A # 频道0接收数据地址
RX_ADDR_P1 = 0x0B # 频道1接收数据地址
RX_ADDR_P2 = 0x0C # 频道2接收数据地址
RX_ADDR_P3 = 0x0D # 频道3接收数据地址
RX_ADDR_P4 = 0x0E # 频道4接收数据地址
RX_ADDR_P5 = 0x0F # 频道5接收数据地址
TX_ADDR = 0x10 # 发送地址寄存器
RX_PW_P0 = 0x11 # 接收频道0接收数据长度
RX_PW_P1 = 0x12 # 接收频道0接收数据长度
RX_PW_P2 = 0x13 # 接收频道0接收数据长度
RX_PW_P3 = 0x14 # 接收频道0接收数据长度
RX_PW_P4 = 0x15 # 接收频道0接收数据长度
RX_PW_P5 = 0x16 # 接收频道0接收数据长度
FIFO_STATUS = 0x17 # FIFO栈入栈出状态寄存器设置
TX_OK = 0x20 #TX发送完成中断
MAX_TX = 0x10 #达到最大发送次数中断
#sta = 0
#RX_DR = 0
#树莓派各个引脚的定义(使用BCM编码)
MOSI = 17
CSN = 21
MISO = 27
SCK = 22
CE = 20
LIGHT = 26
IRQ = 18
def GPIO_Init():
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
Pinlist = [MOSI,CSN,SCK,CE,LIGHT]
GPIO.setup(Pinlist, GPIO.OUT)
Pinlist_Input = [MISO,IRQ]
GPIO.setup(Pinlist_Input, GPIO.IN)
return 0
def LEDH():
GPIO.output(LIGHT, GPIO.HIGH)
def LEDL():
GPIO.output(LIGHT, GPIO.LOW)
#****************************************************************************************************
#*函数:uint SPI_RW(uint dat)
#*功能:NRF24L01的SPI写时序
#****************************************************************************************************
def SPI_RW(dat):
bit_ctr = 8
_MOSI = 0
while(bit_ctr):
bit_ctr = bit_ctr - 1
_MOSI = dat & 0x80 #output 'dat', MSB to MOSI
if(_MOSI):
GPIO.output(MOSI, GPIO.HIGH)
else:
GPIO.output(MOSI, GPIO.LOW)
dat = (dat << 1) #shift next bit into MSB..
GPIO.output(SCK, GPIO.HIGH) #Set SCK GPIO.high..
dat |= GPIO.input(MISO) #capture current MISO bit
GPIO.output(SCK, GPIO.LOW) #..then set SCK GPIO.low again
return dat #return read dat
#****************************************************************************************************
#*函数:uchar SPI_Read(uchar reg)
#*功能:NRF24L01的SPI读时序
#*****************************************************************************************************
def SPI_Read(reg):
reg_val = 0
GPIO.output(CSN, GPIO.LOW) #CSN GPIO.low, initialize SPI communication...
SPI_RW(reg) #Select register to read from..
reg_val = SPI_RW(0) #..then read registervalue
GPIO.output(CSN, GPIO.HIGH) #CSN GPIO.high, terminate SPI communication
return reg_val #return register value
#****************************************************************************************************#
#*功能:NRF24L01读写寄存器函数
#****************************************************************************************************#
def SPI_RW_Reg(reg,value):
status = 0
GPIO.output(CSN, GPIO.LOW) #CSN GPIO.low, init SPI transaction
status = SPI_RW(reg) #select register
SPI_RW(value) #..and write value to it..
GPIO.output(CSN, GPIO.HIGH) #CSN GPIO.high again
return status #return nRF24L01 status uchar
#****************************************************************************************************#
#*函数:uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
#*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数
#****************************************************************************************************#
def SPI_Read_Buf(reg, pBuf, uchars):
status = 0
uchar_ctr = 0
GPIO.output(CSN, GPIO.LOW) # Set CSN GPIO.low, init SPI tranaction
status = SPI_RW(reg) # Select register to write to and read status uchar
while(uchar_ctr < uchars):
pBuf[uchar_ctr] = SPI_RW(0) #
uchar_ctr = uchar_ctr + 1
GPIO.output(CSN, GPIO.HIGH)
return(status) #return nRF24L01 status uchar
#*********************************************************************************************************
#*函数:uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
#*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数
#*********************************************************************************************************#
def SPI_Write_Buf(reg, pBuf, uchars):
status = 0
uchar_ctr = 0
GPIO.output(CSN, GPIO.LOW) #SPI使能
status = SPI_RW(reg)
while(uchar_ctr < uchars): #
SPI_RW(pBuf[uchar_ctr])
uchar_ctr = uchar_ctr + 1
GPIO.output(CSN, GPIO.HIGH) #关闭SPI
return(status)
#****************************************************************************************************#
#*函数:void SetRX_Mode(void)
#*功能:数据接收配置
#****************************************************************************************************#
def SetRX_Mode():
GPIO.output(CE, GPIO.LOW)
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f) # IRQ收发完成中断响应,16位CRC ,主接收
GPIO.output(CE, GPIO.HIGH)
#******************************************************************************************************#
#*函数:unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)
#*功能:数据读取后放如rx_buf接收缓冲区中
#******************************************************************************************************#
def nRF24L01_RxPacket(rx_buf):
revale = 0
sta = 0
RX_DR = 0
sta = SPI_Read(STATUS) # 读取状态寄存其来判断数据接收状况
RX_DR = sta&0x40
if(RX_DR): # 判断是否接收到数据
GPIO.output(CE, GPIO.LOW) #SPI使能
SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH) # read receive payload from RX_FIFO buffer
revale =1 #读取数据完成标志
SPI_RW_Reg(WRITE_REG+STATUS,sta) #接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志
return revale
#***********************************************************************************************************
#*函数:void nRF24L01_TxPacket(unsigned char * tx_buf)
#*功能:发送 tx_buf中数据
#**********************************************************************************************************#
def nRF24L01_TxPacket(tx_buf):
sta = 0
GPIO.output(CE, GPIO.LOW)
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e)
#微控制器把CE置高(至少10us)
GPIO.output(CE, GPIO.HIGH)
time.sleep(0.0001)
GPIO.output(CE, GPIO.LOW) #StandBy I模式
SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH) # 装载数据
GPIO.output(CE, GPIO.HIGH) #置高CE,激发数据发送
# while(GPIO.input(IRQ)!=0) #等待发送完成
sta=SPI_Read(STATUS)
print(sta)
if(sta & MAX_TX): #达到最大重发次数
SPI_RW_Reg(FLUSH_TX,0xff) #清除TX FIFO寄存器
return MAX_TX
if(sta&TX_OK): #发送完成
return 0
return 0xff #其他原因发送失败
#****************************************************************************************
#*NRF24L01初始化
#***************************************************************************************#
def Init_NRF24L01():
GPIO.output(CE, GPIO.LOW) # chip enable
GPIO.output(CSN, GPIO.HIGH) # Spi disable
GPIO.output(SCK, GPIO.LOW) # Spi clock line init GPIO.high
SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH) # 写本地地址
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH) # 写接收端地址
SPI_RW_Reg(WRITE_REG + EN_AA, 0x01) # 频道0自动 ACK应答允许
SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01) # 允许接收地址只有频道0,如果需要多频道可以参考Page21
SPI_RW_Reg(WRITE_REG + RF_CH, 40) # 设置信道工作为2.4GHZ,收发必须一致
SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH) #设置接收数据长度,本次设置为32字节
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x0f) #设置发射速率为1MHZ,发射功率为最大值0dB
return 0
if __name__ == "__main__":
TxBuf = [1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0]
RxBuf = [0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0]
SendResult = 0
GPIO_Init()
Init_NRF24L01()
print("Init Over")
config_ADD = [0]
config_count = 1
firstData = 0
secondData = 0
while True:
#测试发送变化的数据
if firstData>16:
firstData = 1
else:
firstData = firstData + 1
pass
if secondData>31:
secondData = 1
else:
secondData = secondData + 1
pass
TxBuf = [firstData,secondData,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0]
#print("start send")
SendResult = nRF24L01_TxPacket(TxBuf)
#print("resultCode:"+str(SendResult))
if SendResult == 0:
LEDH()
print("send data success")
time.sleep(0.1)
LEDL()
time.sleep(0.1)
pass

233
NRF24L01Slave.py

@ -0,0 +1,233 @@ @@ -0,0 +1,233 @@
# -*- coding: UTF-8 -*-
import time
import RPi.GPIO as GPIO
#一下试一下nrf24l01的C语言宏定义
TX_ADR_WIDTH = 5 # 5 uints TX address width
RX_ADR_WIDTH = 5 # 5 uints RX address width
TX_PLOAD_WIDTH = 32 # 20 uints TX payload
RX_PLOAD_WIDTH = 32 # 20 uints TX payload
TX_ADDRESS = [0x34,0x43,0x10,0x10,0x01] #本地地址
RX_ADDRESS = [0x34,0x43,0x10,0x10,0x01] #接收地址
READ_REG = 0x00 # 读寄存器指令
WRITE_REG = 0x20 # 写寄存器指令
RD_RX_PLOAD = 0x61 # 读取接收数据指令
WR_TX_PLOAD = 0xA0 # 写待发数据指令
FLUSH_TX = 0xE1 # 冲洗发送 FIFO指令
FLUSH_RX = 0xE2 # 冲洗接收 FIFO指令
REUSE_TX_PL = 0xE3 # 定义重复装载数据指令
NOP = 0xFF # 保留
#*************************************SPI(nRF24L01)寄存器地址****************************************************
CONFIG = 0x00 # 配置收发状态,CRC校验模式以及收发状态响应方式
EN_AA = 0x01 # 自动应答功能设置
EN_RXADDR = 0x02 # 可用信道设置
SETUP_AW = 0x03 # 收发地址宽度设置
SETUP_RETR = 0x04 # 自动重发功能设置
RF_CH = 0x05 # 工作频率设置
RF_SETUP = 0x06 # 发射速率、功耗功能设置
STATUS = 0x07 # 状态寄存器
OBSERVE_TX = 0x08 # 发送监测功能
CD = 0x09 # 地址检测
RX_ADDR_P0 = 0x0A # 频道0接收数据地址
RX_ADDR_P1 = 0x0B # 频道1接收数据地址
RX_ADDR_P2 = 0x0C # 频道2接收数据地址
RX_ADDR_P3 = 0x0D # 频道3接收数据地址
RX_ADDR_P4 = 0x0E # 频道4接收数据地址
RX_ADDR_P5 = 0x0F # 频道5接收数据地址
TX_ADDR = 0x10 # 发送地址寄存器
RX_PW_P0 = 0x11 # 接收频道0接收数据长度
RX_PW_P1 = 0x12 # 接收频道0接收数据长度
RX_PW_P2 = 0x13 # 接收频道0接收数据长度
RX_PW_P3 = 0x14 # 接收频道0接收数据长度
RX_PW_P4 = 0x15 # 接收频道0接收数据长度
RX_PW_P5 = 0x16 # 接收频道0接收数据长度
FIFO_STATUS = 0x17 # FIFO栈入栈出状态寄存器设置
TX_OK = 0x20 #TX发送完成中断
MAX_TX = 0x10 #达到最大发送次数中断
#sta = 0
#RX_DR = 0
#树莓派各个引脚的定义(使用BCM编码)
MOSI = 5
CSN = 16
MISO = 6
SCK = 13
CE = 19
LIGHT = 12
IRQ = 17
def GPIO_Init():
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
Pinlist = [MOSI,CSN,SCK,CE,LIGHT]
GPIO.setup(Pinlist, GPIO.OUT)
Pinlist_Input = [MISO,IRQ]
GPIO.setup(Pinlist_Input, GPIO.IN)
return 0
def LEDH():
GPIO.output(LIGHT, GPIO.HIGH)
def LEDL():
GPIO.output(LIGHT, GPIO.LOW)
#****************************************************************************************************
#*函数:uint SPI_RW(uint dat)
#*功能:NRF24L01的SPI写时序
#****************************************************************************************************
def SPI_RW(dat):
bit_ctr = 8
_MOSI = 0
while(bit_ctr):
bit_ctr = bit_ctr - 1
_MOSI = dat & 0x80 #output 'dat', MSB to MOSI
if(_MOSI):
GPIO.output(MOSI, GPIO.HIGH)
else:
GPIO.output(MOSI, GPIO.LOW)
dat = (dat << 1) #shift next bit into MSB..
GPIO.output(SCK, GPIO.HIGH) #Set SCK GPIO.high..
dat |= GPIO.input(MISO) #capture current MISO bit
GPIO.output(SCK, GPIO.LOW) #..then set SCK GPIO.low again
return dat #return read dat
#****************************************************************************************************
#*函数:uchar SPI_Read(uchar reg)
#*功能:NRF24L01的SPI读时序
#*****************************************************************************************************
def SPI_Read(reg):
reg_val = 0
GPIO.output(CSN, GPIO.LOW) #CSN GPIO.low, initialize SPI communication...
SPI_RW(reg) #Select register to read from..
reg_val = SPI_RW(0) #..then read registervalue
GPIO.output(CSN, GPIO.HIGH) #CSN GPIO.high, terminate SPI communication
return reg_val #return register value
#****************************************************************************************************#
#*功能:NRF24L01读写寄存器函数
#****************************************************************************************************#
def SPI_RW_Reg(reg,value):
status = 0
GPIO.output(CSN, GPIO.LOW) #CSN GPIO.low, init SPI transaction
status = SPI_RW(reg) #select register
SPI_RW(value) #..and write value to it..
GPIO.output(CSN, GPIO.HIGH) #CSN GPIO.high again
return status #return nRF24L01 status uchar
#****************************************************************************************************#
#*函数:uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
#*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数
#****************************************************************************************************#
def SPI_Read_Buf(reg, pBuf, uchars):
status = 0
uchar_ctr = 0
GPIO.output(CSN, GPIO.LOW) # Set CSN GPIO.low, init SPI tranaction
status = SPI_RW(reg) # Select register to write to and read status uchar
while(uchar_ctr < uchars):
pBuf[uchar_ctr] = SPI_RW(0) #
uchar_ctr = uchar_ctr + 1
GPIO.output(CSN, GPIO.HIGH)
return(status) #return nRF24L01 status uchar
#*********************************************************************************************************
#*函数:uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
#*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数
#*********************************************************************************************************#
def SPI_Write_Buf(reg, pBuf, uchars):
status = 0
uchar_ctr = 0
GPIO.output(CSN, GPIO.LOW) #SPI使能
status = SPI_RW(reg)
while(uchar_ctr < uchars): #
SPI_RW(pBuf[uchar_ctr])
uchar_ctr = uchar_ctr + 1
GPIO.output(CSN, GPIO.HIGH) #关闭SPI
return(status)
#****************************************************************************************************#
#*函数:void SetRX_Mode(void)
#*功能:数据接收配置
#****************************************************************************************************#
def SetRX_Mode():
GPIO.output(CE, GPIO.LOW)
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f) # IRQ收发完成中断响应,16位CRC ,主接收
GPIO.output(CE, GPIO.HIGH)
#******************************************************************************************************#
#*函数:unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)
#*功能:数据读取后放如rx_buf接收缓冲区中
#******************************************************************************************************#
def nRF24L01_RxPacket(rx_buf):
revale = 0
sta = 0
RX_DR = 0
sta = SPI_Read(STATUS) # 读取状态寄存其来判断数据接收状况
RX_DR = sta&0x40
if(RX_DR): # 判断是否接收到数据
GPIO.output(CE, GPIO.LOW) #SPI使能
SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH) # read receive payload from RX_FIFO buffer
revale =1 #读取数据完成标志
SPI_RW_Reg(WRITE_REG+STATUS,sta) #接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志
return revale
#***********************************************************************************************************
#*函数:void nRF24L01_TxPacket(unsigned char * tx_buf)
#*功能:发送 tx_buf中数据
#**********************************************************************************************************#
def nRF24L01_TxPacket(tx_buf):
sta = 0
GPIO.output(CE, GPIO.LOW)
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e)
GPIO.output(CE, GPIO.HIGH)
time.sleep(0.00001)
GPIO.output(CE, GPIO.LOW) #StandBy I模式
SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH) # 装载数据
GPIO.output(CE, GPIO.HIGH) #置高CE,激发数据发送
# while(GPIO.input(IRQ)!=0) #等待发送完成
sta=SPI_Read(STATUS)
if(sta & MAX_TX): #达到最大重发次数
SPI_RW_Reg(FLUSH_TX,0xff) #清除TX FIFO寄存器
return MAX_TX
if(sta&TX_OK): #发送完成
return 0
return 0xff #其他原因发送失败
#****************************************************************************************
#*NRF24L01初始化
#***************************************************************************************#
def Init_NRF24L01():
GPIO.output(CE, GPIO.LOW) # chip enable
GPIO.output(CSN, GPIO.HIGH) # Spi disable
GPIO.output(SCK, GPIO.LOW) # Spi clock line init GPIO.high
SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH) # 写本地地址
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH) # 写接收端地址
SPI_RW_Reg(WRITE_REG + EN_AA, 0x01) # 频道0自动 ACK应答允许
SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01) # 允许接收地址只有频道0,如果需要多频道可以参考Page21
SPI_RW_Reg(WRITE_REG + RF_CH, 40) # 设置信道工作为2.4GHZ,收发必须一致
SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH) #设置接收数据长度,本次设置为32字节
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x0f) #设置发射速率为1MHZ,发射功率为最大值0dB
return 0
if __name__ == "__main__":
TxBuf = [1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0]
RxBuf = [0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0]
GPIO_Init()
Init_NRF24L01()
SetRX_Mode()
while True:
if nRF24L01_RxPacket(RxBuf):
if RxBuf[0]:
print(RxBuf)
LEDH()
SetRX_Mode()
time.sleep(0.1)
LEDL()
time.sleep(0.1)

78
TemperatureSensor.py

@ -0,0 +1,78 @@ @@ -0,0 +1,78 @@
import RPi.GPIO as GPIO
import time
channel = 16 # 引脚号16
data = [] # 温湿度值
j = 0 # 计数器
GPIO.setmode(GPIO.BCM) # 以BCM编码格式
time.sleep(1) # 时延一秒
GPIO.setup(channel, GPIO.OUT)
GPIO.output(channel, GPIO.LOW)
time.sleep(0.02) # 给信号提示传感器开始工作
GPIO.output(channel, GPIO.HIGH)
GPIO.setup(channel, GPIO.IN)
while GPIO.input(channel) == GPIO.LOW:
print("----------------low1---------------")
continue
while GPIO.input(channel) == GPIO.HIGH:
print("----------------high---------------")
continue
#signal get
while j < 40:
k = 0
while GPIO.input(channel) == GPIO.LOW:
print("----------------low2---------------")
continue
while GPIO.input(channel) == GPIO.HIGH:
k += 1
if k > 100:
break
print("----------------k="+str(k)+"---------------")
if k < 38:
data.append(0)
else:
data.append(1)
j += 1
print("sensor is working.")
print(data) # 输出初始数据高低电平
print(len(data)) # 长度
humidity_bit = data[0:8] # 分组
humidity_point_bit = data[8:16]
temperature_bit = data[16:24]
temperature_point_bit = data[24:32]
check_bit = data[32:40]
humidity = 0
humidity_point = 0
temperature = 0
temperature_point = 0
check = 0
for i in range(8):
humidity += humidity_bit[i] * 2 ** (7 - i) # 转换成十进制数据
humidity_point += humidity_point_bit[i] * 2 ** (7 - i)
temperature += temperature_bit[i] * 2 ** (7 - i)
temperature_point += temperature_point_bit[i] * 2 ** (7 - i)
check += check_bit[i] * 2 ** (7 - i)
tmp = humidity + humidity_point + temperature + temperature_point # 十进制的数据相加
if check == tmp: # 数据校验,相等则输出
print("temperature : ", temperature, ", humidity : ", humidity)
else: # 错误输出错误信息,和校验数据
print("wrong")
print("temperature : ", temperature, ", humidity : ", humidity, " check : ", check, " tmp : ", tmp)
GPIO.cleanup()

80
TemperatureSensor2.py

@ -0,0 +1,80 @@ @@ -0,0 +1,80 @@
import RPi.GPIO as gpio
import time
import dhtsensor
gpio.setwarnings(False)
gpio.setmode(gpio.BOARD)
time.sleep(1)
data = []
def delay(i): # 20*i usdelay
a = 0
for j in range(i):
a + 1
j = 0
# start work
gpio.setup(12, gpio.OUT)
# gpio.output(12,gpio.HIGH)
# delay(10)
gpio.output(12, gpio.LOW)
time.sleep(0.02)
gpio.output(12, gpio.HIGH)
i = 1
i = 1
# wait to response
gpio.setup(12, gpio.IN)
while gpio.input(12) == 1:
continue
while gpio.input(12) == 0:
continue
while gpio.input(12) == 1:
continue
# get data
while j < 40:
k = 0
while gpio.input(12) == 0:
continue
while gpio.input(12) == 1:
k += 1
if k > 100: break
if k < 3:
data.append(0)
else:
data.append(1)
j += 1
print("Sensor is working")
# get temperature
humidity_bit = data[0:8]
humidity_point_bit = data[8:16]
temperature_bit = data[16:24]
temperature_point_bit = data[24:32]
check_bit = data[32:40]
humidity = 0
humidity_point = 0
temperature = 0
temperature_point = 0
check = 0
for i in range(8):
humidity += humidity_bit[i] * 2 ** (7 - i)
humidity_point += humidity_point_bit[i] * 2 ** (7 - i)
temperature += temperature_bit[i] * 2 ** (7 - i)
temperature_point += temperature_point_bit[i] * 2 ** (7 - i)
check += check_bit[i] * 2 ** (7 - i)
tmp = humidity + humidity_point + temperature + temperature_point
if check == tmp:
print("temperature is ", temperature, "wet is ", humidity, "%")
else:
print("something is worong the humidity,humidity_point,temperature,temperature_point,check is", humidity, humidity_point, temperature, temperature_point, check)

222
micropythonGUI.py

@ -0,0 +1,222 @@ @@ -0,0 +1,222 @@
from machine import I2C,Pin
from ssd1306 import SSD1306_I2C
import math
chine=[
#/*-- 文字: 执 --*/
#/*-- 新宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/
0x10,0x10,0x10,0xFF,0x10,0x90,0x00,0x10,0x10,0xFF,0x10,0x10,0xF0,0x00,0x00,0x00,
0x04,0x44,0x82,0x7F,0x01,0x80,0x40,0x21,0x1A,0x07,0x18,0x00,0x3F,0x40,0xF0,0x00,
#/*-- 文字: 念 --*/
#/*-- 新宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/
0x40,0x40,0x20,0x20,0x90,0x88,0x94,0xE3,0x84,0x88,0x90,0x20,0x20,0x40,0x40,0x00,
0x40,0x30,0x00,0x00,0x38,0x40,0x40,0x44,0x5A,0x41,0x40,0x70,0x00,0x08,0x30,0x00,
#/*-- 文字: 执 --*/
#/*-- 新宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/
0x10,0x10,0x10,0xFF,0x10,0x90,0x00,0x10,0x10,0xFF,0x10,0x10,0xF0,0x00,0x00,0x00,
0x04,0x44,0x82,0x7F,0x01,0x80,0x40,0x21,0x1A,0x07,0x18,0x00,0x3F,0x40,0xF0,0x00,
#/*-- 文字: 战 --*/
#/*-- 新宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/
0x00,0x00,0x00,0xFF,0x08,0x08,0x08,0x40,0x40,0x40,0xFF,0x20,0x22,0xAC,0x20,0x00,
0x00,0x7F,0x21,0x21,0x21,0x21,0x7F,0x80,0x40,0x20,0x17,0x18,0x26,0x41,0xF0,0x00,
]
i2c=I2C(-1, sda=Pin(4), scl=Pin(5), freq=400000)
oled = SSD1306_I2C(128, 64, i2c)
def ByteOpera(num,dat):
byte= [0x01,0x02,0x04,0x8,0x10,0x20,0x40,0x80]
if dat&byte[num]:
return 1
else:
return 0
def hline(x0,y0,le,color):
for i in range(le):
oled.pixel(x0+i,y0,color)
def shuline(x0,y0,le,color):
for i in range(le):
oled.pixel(x0,y0+i,color)
class GUI:
#画点
def DrawDot(x,y):
oled.pixel(x,y)
#横线
def hline(x0,y0,le,color):
for i in range(le):
oled.pixel(x0+i,y0,color)
#竖线
def shuline(x0,y0,le,color):
for i in range(le):
oled.pixel(x0,y0+i,color)
##########################
#函数:Line
#功能:任意画线
#描述:
# x0,y0:起始位置
# x1,y1:终止位置
# color:颜色
#
def Line(x0,y0,x1,y1,color):
dx=x1-x0
if(dx>0):
s1=1
else:
s1=-1
dy=y1-y0
if(dy>0):
s2=1
else:
s2=-1
dx=math.fabs(x1-x0)
dy=math.fabs(y1-y0)
if(dy>dx):
temp=dx
dx=dy
dy=temp
status=1
else:
status=0
if(dx==0):
hline(x0,y0,y1-y0,color)
if(dy==0):
shuline(x0,y0,x1-x0,color)
sub=2*dy-dx
for i in range(dx):
oled.pixel(x0,y0,color)
if(sub>0):
if(status==1):
x0+=s1
else:
y0+=s2
sub-=2*dx
if(status==1):
y0+=s2
else:
x0+=s1
sub+=2*dy
#oled.show()
#######################
#画矩形函数
#fill为是否填充,默认不填充
def DrawBox(x0,y0,x1,y1,color=1,fill=0):
if (fill==1):
for i in range(y1-y0):
hline(x0,y0+i,x1-x0,color)
else:
hline(x0,y0,x1-x0,color)
hline(x0,y1,x1-x0,color)
shuline(x0,y0,y1-y0,color)
shuline(x1,y0,y1-y0,color)
##############################
#画圆函数,很占CPU
#fill 为是否填充
#画两遍,是因为只画一遍的话中间有点画不上
def DrawCircle_math(x,y,r,color,fill=0):
if(fill==0):
for i in range(x-r,x+r+1):
oled.pixel(i,int(y-math.sqrt(r*r-(x-i)*(x-i))),color)
oled.pixel(i,int(y+math.sqrt(r*r-(x-i)*(x-i))),color)
for i in range(y-r,y+r+1):
oled.pixel(int(x-math.sqrt(r*r-(y-i)*(y-i))),i,color)
oled.pixel(int(x+math.sqrt(r*r-(y-i)*(y-i))),i,color)
else:
for i in range(x-r,x+r+1):
a=int(math.sqrt(r*r-(x-i)*(x-i)))
shuline(i,y-a,a*2,color)
for i in range(y-r,y+r+1):
a=int(math.sqrt(r*r-(y-i)*(y-i)))
hline(x-a,i,a*2,color)
#########################
#画圆函数
#网上的算法,不怎么圆
def DrawCircle(x,y,r,color):
a=0
b=r
di=3-2*r
while a<b:
oled.pixel(x-b,y-a,color)
oled.pixel(x+b,y-a,color)
oled.pixel(x-a,y+b,color)
oled.pixel(x-b,y-a,color)
oled.pixel(x-a,y-b,color)
oled.pixel(x+b,y+a,color)
oled.pixel(x+a,y-b,color)
oled.pixel(x+a,y+b,color)
oled.pixel(x-b,y+a,color)
a=a+1
if(di<0):
di+=4*a+6
else:
di+=10+4*(a-b)
b=b-1
oled.pixel(x+a,y+b,color)
#oled.show()
############################
#16x16中文字符函数
def ShowChar16x16(x,y,n):
for i in range(2):
for a in range(16):
for b in range(8):
if(ByteOpera(b,chine[n*32+i*16+a])):
oled.pixel(x+a,y+i*8+b,1)
else:
oled.pixel(x+a,y+i*8+b,0)
#oled.show()
######################
#任意大小图片显示
def ShowPic(x,y,w,h,color,pic):
a=h/8
if(h%8>0):
a+=1
for i in range(a):
for n in range(w):
for z in range(8):
if(ByteOpera(z,pic[a*w+n])):
oled.pixel(w,y+a*8+z,1)
else:
oled.pixel(w,y+a*8+z,0)
#奇数时反相显示,偶数时正常显示
def invert(n):
oled.invert(n)
#调整亮度。0最暗,255最亮
def contrast(n):
oled.contrast(n)
#在(x, y)处显示字符串,注意text()函数内置的字体是8x8的,暂时不能替换
def text(char,x,y):
oled.text(char,x,y)
#n=0,清空屏幕,n大于0,填充屏幕
def fill(n):
oled.fill(n)
#######################
#显示函数
def show():
oled.show()
#关屏函数
def poweroff():
oled.poweroff()
def poweron():
oled.poweron()

38
ssd1306_simpletest.py

@ -0,0 +1,38 @@ @@ -0,0 +1,38 @@
# SPDX-FileCopyrightText: Tony DiCola
# SPDX-License-Identifier: CC0-1.0
# Basic example of clearing and drawing pixels on a SSD1306 OLED display.
# This example and library is meant to work with Adafruit CircuitPython API.
# Import all board pins.
from board import SCL, SDA
import busio
# Import the SSD1306 module.
import adafruit_ssd1306
# Create the I2C interface.
i2c = busio.I2C(SCL, SDA)
# Create the SSD1306 OLED class.
# The first two parameters are the pixel width and pixel height. Change these
# to the right size for your display!
display = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
# Alternatively you can change the I2C address of the device with an addr parameter:
# display = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c, addr=0x31)
# Clear the display. Always call show after changing pixels to make the display
# update visible!
display.fill(0)
display.show()
# Set a pixel in the origin 0,0 position.
display.pixel(0, 0, 1)
# Set a pixel in the middle 64, 16 position.
display.pixel(64, 16, 1)
# Set a pixel in the opposite 127, 31 position.
display.pixel(127, 31, 1)
display.show()

9
test.py

@ -0,0 +1,9 @@ @@ -0,0 +1,9 @@
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(5,GPIO.IN)
if GPIO.input(5):
print("input was high")
else:
print("input was low")
Loading…
Cancel
Save